Abiotic depletion potential
Contents |
[edit] Definition
Abiotic depletion refers to the removal of abiotic resources from the earth, or the depletion of non-living natural resources. For materials it is generally measured as abiotic depletion potential (ADP).
[edit] EN 15804:2012+A2:2019/AC:2021
ADP (both fossil and non fossil) are used as environmental impact indicators of EN 15804:2012+A2:2019/AC:2021 which is used as guidance in the generation of the life cycle assessment (LCA) methodology used to create Product Environmental Footprints (PEF). It is also considered to be one of the environmental performance indicators for the calculation, assessment and generation of environmental product declarations (EPDs).
In general it is separated out into two categories, one for non fossil based resources (minerals and metals) and a second for fossil resources. In both cases, it is recommended that assessment of ADP as an environmental impact indicator should be used with care as the uncertainties of the results are high and there is limited experience of its use as an indicator
[edit] Abiotic depletion potential (ADP) for minerals and metals (non-fossil resources)
In the same way that the global warming potential (GWP) of different pollutants are converted to ratios CO2 equivalent figures, ADP values are usually calculated to and equivalent of Antimony or Sb eq. Antimony (Sb) is a chemical element atomic number 51, a gray metalloid, found in nature mainly as the sulfide mineral stibnite. It is about one-fifth as abundant as arsenic, contributing on the average about one gram to every ton of Earth’s crust.
Examples
1 kg antimony = 1 kg Sb eq.
1 kg aluminium = 1.09 * 10^-9 Sb eq.
1 kg silver = 1.18 kg Sb eq.
(ref, ADP minerals & metals, EN 15804. Version: August 2021, Guinée et al. 2002, van Oers et al. 2002, CML 2001 baseline (Version: January 2016)
[edit] Abiotic depletion potential (ADP) for fossil resources
Here the weight of material is converted to its potential energy in unit in megajoules (MJ) equivalent to one million joules.
Examples
1 kg coal hard = 27.91 MJ
1 kg coal soft, lignite = 13.96 MJ
(Refs, ADP fossil resources, EN 15804. Version: August 2021, Guinée et al. 2002, van Oers et al. 2002, CML 2001 baseline (Version: January 2016)
[edit] Related articles on Designing Buildings
Featured articles and news
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.




















