Whole life carbon
Whole life, building life cycle or full building carbon assessments consider the combined impacts of both operational and embodied carbon emissions over a building's ent9ire lifecycle, including repair and replacement cycles. Carbon in this case usually refers to carbon dioxide equivalent (CO2e) which is a metric measure used to compare the emissions from various greenhouse gases on the basis of their global-warming potential (GWP), by converting amounts of other gases to the equivalent amount of carbon dioxide ( often shortened to just carbon) with the same global warming potential.
Operational emissions from the use of a building or asset are divided into direct emissions, such as a wood burning stove or gas cooker, called Scope 1 emissions and indirect emissions, from for example electricity used in the dwelling but produced via a coal fired power station, which are called Scope 2 emissions. Embodied or Scope 3 emissions are effectively all other emissions that might relate to the construction of a building, the carbon emissions resulting from the materials, construction and the use of a building over its entire life, including its demolition, disposal or re-use.
A Whole Life Cycle Carbon assessment provides a true picture of a building's carbon impact on the environment and studies will normally divide the whole life assessment into system boundaries from cradle to cradle according to the standard BS EN 15978-1 Sustainability of construction works - Methodology for the assessment of performance of buildings. - Part 1: Environmental Performance. This standard looks at a number of different impact categories across a building life cycle, how ever the same principles are used when the only impact category being studied is carbon equivalent emissions.
Studies have shown that when a building is assessed over a full life cycle of 60 years the carbon emissions that are associated with all processes up to its final completion can be up to 50% of the buildings associated carbon emissions.
There are a number of key documents that are freely available and help explain what whole life carbon is, why it is important and how to calculate it for a building design, some of these are given below.
- The Royal Institution of Chartered Surveyors Whole life carbon assessment for the built environment - RICS V2
- The Royal Institution of British Architects Embodied and whole life carbon assessment for architects
- The Association of Sustainable Buildings Products Whole life carbon measurement: implementation in the built environment
- Low Energy Transformation Initiative https://www.leti.uk/carbonalignment
- The Institution of Structural Engineers https://www.istructe.org/IStructE/media/Public/TSE-Archive/2020/A-brief-guide-to-calculating-embodied-carbon.pdf
NB PAS 2080:2023 Carbon management in buildings and infrastructure, second edition, published by The British Standards Institution in March 2023, defines whole life carbon as the: ‘sum of greenhouse gas emissions and removals from all work stages of a project and/or programme of works within the specified boundaries…. NOTE 1 This includes GHG emissions and removals within the project/programme boundary, as well as emissions/removals between the project/programme and study boundary. NOTE 2 Not to be confused with “design life”, which is the life expectancy of the material/product/asset, as defined by its designers within its specified parameters. Typically, whole life is longer than design life. NOTE 3 Whole life carbon considerations for a project and programme of works are wider than the typical life cycle assessments account for, particularly when considering carbon emissions/removals in their influence at a system level.’
--editor
[edit] Related articles on Designing Buildings
Featured articles and news
RTPI leader to become new CIOB Chief Executive Officer
Dr Victoria Hills MRTPI, FICE to take over after Caroline Gumble’s departure.
Social and affordable housing, a long term plan for delivery
The “Delivering a Decade of Renewal for Social and Affordable Housing” strategy sets out future path.
A change to adoptive architecture
Effects of global weather warming on architectural detailing, material choice and human interaction.
The proposed publicly owned and backed subsidiary of Homes England, to facilitate new homes.
How big is the problem and what can we do to mitigate the effects?
Overheating guidance and tools for building designers
A number of cool guides to help with the heat.
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.
UK Infrastructure: A 10 Year Strategy. In brief with reactions
With the National Infrastructure and Service Transformation Authority (NISTA).