Whole life carbon
Whole life, building life cycle or full building carbon assessments consider the combined impacts of both operational and embodied carbon emissions over a building's ent9ire lifecycle, including repair and replacement cycles. Carbon in this case usually refers to carbon dioxide equivalent (CO2e) which is a metric measure used to compare the emissions from various greenhouse gases on the basis of their global-warming potential (GWP), by converting amounts of other gases to the equivalent amount of carbon dioxide ( often shortened to just carbon) with the same global warming potential.
Operational emissions from the use of a building or asset are divided into direct emissions, such as a wood burning stove or gas cooker, called Scope 1 emissions and indirect emissions, from for example electricity used in the dwelling but produced via a coal fired power station, which are called Scope 2 emissions. Embodied or Scope 3 emissions are effectively all other emissions that might relate to the construction of a building, the carbon emissions resulting from the materials, construction and the use of a building over its entire life, including its demolition, disposal or re-use.
A Whole Life Cycle Carbon assessment provides a true picture of a building's carbon impact on the environment and studies will normally divide the whole life assessment into system boundaries from cradle to cradle according to the standard BS EN 15978-1 Sustainability of construction works - Methodology for the assessment of performance of buildings. - Part 1: Environmental Performance. This standard looks at a number of different impact categories across a building life cycle, how ever the same principles are used when the only impact category being studied is carbon equivalent emissions.
Studies have shown that when a building is assessed over a full life cycle of 60 years the carbon emissions that are associated with all processes up to its final completion can be up to 50% of the buildings associated carbon emissions.
There are a number of key documents that are freely available and help explain what whole life carbon is, why it is important and how to calculate it for a building design, some of these are given below.
- The Royal Institution of Chartered Surveyors Whole life carbon assessment for the built environment - RICS V2
- The Royal Institution of British Architects Embodied and whole life carbon assessment for architects
- The Association of Sustainable Buildings Products Whole life carbon measurement: implementation in the built environment
- Low Energy Transformation Initiative https://www.leti.uk/carbonalignment
- The Institution of Structural Engineers https://www.istructe.org/IStructE/media/Public/TSE-Archive/2020/A-brief-guide-to-calculating-embodied-carbon.pdf
NB PAS 2080:2023 Carbon management in buildings and infrastructure, second edition, published by The British Standards Institution in March 2023, defines whole life carbon as the: ‘sum of greenhouse gas emissions and removals from all work stages of a project and/or programme of works within the specified boundaries…. NOTE 1 This includes GHG emissions and removals within the project/programme boundary, as well as emissions/removals between the project/programme and study boundary. NOTE 2 Not to be confused with “design life”, which is the life expectancy of the material/product/asset, as defined by its designers within its specified parameters. Typically, whole life is longer than design life. NOTE 3 Whole life carbon considerations for a project and programme of works are wider than the typical life cycle assessments account for, particularly when considering carbon emissions/removals in their influence at a system level.’
--editor
[edit] Related articles on Designing Buildings
Featured articles and news
A case study and a warning to would-be developers
Creating four dwellings for people to come home to... after half a century of doing this job, why, oh why, is it so difficult?
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
























