Computer numerical control
![]() |
Computer numerical control (CNC) is the digital manipulation of machines such as drills, lathes and other machine tools by computers and circuitry. Also known as numerical control or computational numerical control, the process comprises a series of numerical values generated by a computer; each of which is assigned to a desired tool or control position to enable the machining of a blank piece of material to precise specifications without requiring a manual operator.
The process dateso back to the first CNC machines built in the 1950s and 60s which relied on punched tape (or perforated paper tape) to communicate the tool position that was controlled by a motor. The process has since been refined and improved by analogue and digital computers.
Under CNC, every object to be manufactured is allocated a G-code (an international standard language) that is stored in the machine and executed by a microcomputer (machine control unit or MCU) attached to the machine. The G-code is a set of instructions – such as the positioning or speed of the tool’s components – that the machine will follow to create or part-create the item in question. Typically, this allows the automation of machine tools such as lathes, mills, routers, lasers and grinders.
In sophisticated manufacturing operations, G-codes are typically derived from the automatic translation of engineers’ CAD drawings into a sequential programme of machine control instructions which are then implemented. A less complex method is writing part-programmes using high-level, part-programming languages.
CNC does not rely on conventional control by cranks, cams and gears. Instead, it allows desired feed rates and cuts to be ‘dialled in’, thereby providing precise, repeatable machine movements that can be optimised for speed, feed and machine cycles.
CNC machines give flexibility of manufacture, especially when variable and complex part geometries are required. Parts can be produced in batches of just a few to several thousand.
[edit] Benefits of computer numerical control
- Provides highly automated, precise manufacturing;
- Does not rely on manual control;
- The part produced is a close match to the original CAD drawing, and
- Gives flexibility of batch size.
[edit] Typical applications of CNC include:
- 3D printing
- Lathes
- Mills
- Water jet cutters, drills, embroidery machines, sheet metal works and glass cutting
- Electrical and/or chemical machining
- Lasers, oxy-fuel and plasma technology
[edit] Related articles on Designing Buildings
- 3D printing.
- Advanced construction technology.
- Building drawing software.
- Building information modelling.
- Common data environment.
- Computer aided design.
- Computer aided manufacturing.
- Computers in building design.
- Computers in tendering.
- Computers in the management of construction.
- Information manager.
- Information and communications technology.
- LEXiCON.
- PAS 1192-2:2013.
- Rapid prototyping.
- Twickenham Studio - London's world-renowned film studio transformed.
- Wikihouse.
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.