Types of fuel cells
There are several different types of fuel cells, each based on a different chemistry and suited to different situations.
Fuel cells are generally classified by the type of electrolyte they use and their operating temperatures. The main types of fuel cells include:
One of the oldest fuel cell designs. The AFC is susceptible to contamination and so requires pure hydrogen and oxygen. It generally uses potassium hydroxide in water as the electrolyte. Its efficiency is about 70% and the operating temperature ranges from 150 to 200 degrees Celsius. Fuel cell output ranges from 300 watts to 5 kilowatts.
Direct methanol fuel cell (DMFC)
These fuel cells operate at around 80 degrees Celsius with their efficiency normally below 40%. The DMFC needs a large amount of platinum which acts as the catalyst and so they can be expensive.
Molten carbonate fuel cell (MCFC)
This type of fuel cell is best suited to large power generators. MCFC uses high temperature compounds of salt carbonates as the electrolyte. Efficiency ranges between 60% and 80% and the operating temperature is about 600 degrees Celsius, so the steam that is produced can be used to generate more power. Their output is generally in the range of 2 megawatts up to 100 megawatts.
Phosphoric acid fuel cell (PAFC)
The electrolyte is phosphoric acid. Efficiency ranges from 40% to 80% and the operating temperature is between 150 to 200 degrees Celsius. PAFC have outputs up to 200 kilowatts, although units with 11 megawatts output have been tested. A wide variety of fuels can be used in this system.
Polymer exchange membrane fuel cell (PEM)
This fuel cell works with a polymer electrolyte in the form of a thin, permeable sheet or layer. Efficiency ranges from 40% to 50% and the operating temperature is around 80 degrees Celsius. Fuel cell outputs range from 50 to 250 kilowatts.
Solid oxide fuel cell (SOFC)
Uses a hard, ceramic compound of metal oxides to act at the electrolyte. Efficiency is about 60% and they operate at temperatures of 1000 degrees Celsius. The output from SOFC is up to 100 kilowatts. Waste heat can be recycled in order to produce more electricity.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.




















