AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES

A thesis submitted to the University of Wales for the degree of Philosophiae Doctor

by

GREGOR HARVIE BSc(hons) BArch

Welsh School of Architecture University of Wales College of Cardiff

March 1996

SUMMARY.

This thesis describes a programme of research the aim of which was to investigate the thermal behaviour of spaces enclosed by fabric membrane envelopes.

Initial analysis of the overall situation suggested that a fabric membrane can affect conditions within a space enclosed by it as a result of its internal surface temperature and the amount of thermal radiation it directs into that space. In order to investigate these two parameters, a test cell was constructed which allowed the thermal behaviour of a range of fabric membranes to be monitored.

The monitored data revealed that the thermal behaviour of fabric membranes is only significantly affected by their angular thermal optical properties. These properties were then measured and a dynamic spread sheet model was developed which was able to simulate the monitored behaviour fairly accurately.

In order to investigate the thermal behaviour of spaces enclosed by such membranes, conditions within four existing fabric roofed buildings were monitored. The monitored data revealed that comfort temperatures could vary significantly from place to place within such spaces. These variations were produced by both the stratification of internal air temperatures and differences in internal radiant temperatures.

An attempt was made to simulate the behaviour of the buildings monitored, using a general applications CFD code in conjunction with information generated by the spread sheet model. Whilst simple behaviour patterns could be simulated accurately using this approach, it was apparent that over simplistic boundary specification options left the CFD code unable to accurately predict strong internal stratification.

It was proposed that improving the reliability of this process would require the development of a more holistic CFD model which should be able to accurately predict the thermal behaviour of fabric membranes itself.

CONTENTS.

1:	INTRODUCTION.	1
1:1.	THE INCREASING FREQUENCY OF NEW FABRIC STRUCTURES	2
1:2.	THE INCREASING SIZE AND COMPLEXITY OF NEW FABRIC STRUCTURES.	2
1:3.	THE IMBALANCE IN THE EXISTING BODY OF KNOWLEDGE.	3
1:4.	THE AIMS OF THIS RESEARCH	4
1:5	THE SCOPE OF THIS RESEARCH	5
1:6	THE FORMAT OF THIS THESIS.	5

2:2.	THE ORIGINS OF FABRIC STRUCTURES	9
2:2.1	The Historical Development of Fabric Structures	9
2:2.2	Some Characteristic Features of Early Fabric Structures	11
2:3.	THE HISTORY OF ARCHITECTURAL FABRIC STRUCTURES	12
2:3.1	The Development of Modern Fabric Structures	12
2:3.2	Some Characteristic Features of Modern Fabric Structures	15
2:4.	THE MODERN TENSILE MEMBRANE FABRIC	16
2:4.1	The Development of Structural Membranes.	16
2:4.2	Some Characteristics Features of Architectural Fabric Membranes	19
2:5	CONCLUSION	20

3:	THE EXISTING BODY OF KNOWLEDGE	23
3:1.	INTRODUCTION.	24
3:2.	THE EXISTING BODY OF KNOWLEDGE RELATING TO THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES	24
3:2.1	Steady State Analysis of the Thermal Behaviour of Fabric Membranes.	24
3:2.2	Evaluation of Steady State Analysis Techniques.	28
3:2.3	Dynamic Analysis of the Thermal Behaviour of Fabric Membranes	29
3:3.	THE EXISTING BODY OF KNOWLEDGE RELATING TO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES	31
3:3.1	Early Investigations into the Thermal Performance of Spaces Enclosed by Fabric Membranes.	31
3:3.2	The Observed Thermal Behaviour of Spaces Enclosed by Fabric Membranes.	33
3:3.3	Recent Attempts to Model the Thermal Behaviour of Spaces Enclosed by Fabric Membranes.	34
3:3.4	Evaluation of the Existing Body of Knowledge	35
3:4.	CONCLUSION.	36

4:	METHODOLOGY	40
----	-------------	----

4:1.	INTRODUCTION.	41
4:2.	THE PILOT STUDIES	41
4:2.1	The Purpose of the Pilot Studies.	41
4:2.2	Apparatus used for the Pilot Studies.	42
4:2.3	Method Adopted for the Pilot Studies	42
4:2.4	Case Study 1: Landrell Fabric Engineering	45
4:2.5	Case Study 2: The Royal International Eisteddfod Pavilion, Main Arena	48
4:2.6	Case Study 3: The AELTC Indoor Tennis Centre, Covered Courts.	50
4:2.7	Analysis of the Information Obtained by the Pilot Studies	52

4:3.	THE GENERAL APPROACH ADOPTED FOR THE RESEARCH	
	PRESENTED IN THE REST OF THIS THESIS.	54
4:3.1	Introduction.	54

4:3.2	The General Approach Adopted for Investigating the Thermal Behaviour of Fabric Membranes
4:3.3	The General Approach Adopted for Investigating the Thermal Behaviour of Spaces Enclosed by Fabric Membranes
4:4.	CONCLUSION
5:	MONITORING THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES57
5:1.	INTRODUCTION
5:2.	A TEST CELL FOR INVESTIGATING THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES58
5:2.1	The Aim of the Test Cell
5:2.2	The Thermal Parameters Monitored Using the Test Cell
5:2.3	The Design and Construction of the Test Cell and Associated Meteorological Station
5:3.	MEMBRANE BEHAVIOUR RECORDED USING THE TEST CELL64
5:3.1	Data Collected Using the Test Cell64
5:3.2	Intra Surface Conduction72
5:3.3	Surface Convection75
5:3.4	Surface Long Wave Infra Red Radiation Exchange75
5:3.5	Solar Radiation Absorption76
5:3.6	Transmitted External Solar Radiation and Reflected Internal Solar Radiation
5:4.	CONCLUSION78

6:	MEASURING THE THERMAL PROPERTIES	
	OF FABRIC MEMBRANES	.80

6:1.	INTRODUCTION.	81
6:2.	THE GENERAL APPROACH ADOPTED FOR MEASURING THE THERMAL OPTICAL PROPERTIES OF FABRIC MEMBRANES	.82
6:2.1	The Categorisation of Thermal Optical Properties.	82

6:2.2	The Solar Optical Properties of Fabric Membranes	84
6:2.3	The Long Wave Infra Red Optical Properties of Fabric Membranes.	85
6:2.4	The Choice of Membranes to be Examined.	86
6:3.	THE NEAR NORMAL SOLAR OPTICAL PROPERTIES OF FABRIC MEMBRANES	87
6:3.1	The Purpose of Measuring the Near Normal Solar Optical Properties of the Membrane Samples.	87
6:3.2	The Apparatus used to Measure the Near Normal Solar Optical Properties of the Membrane Samples	87
6:3.3	The Method used to Determine the Near Normal Solar Optical Properties of the Membrane Samples	89
6:3.4	The Results Obtained Using the Solar Spectrophotometer.	89
6:3.5	Analysis of the Results Obtained Using the Solar Spectrophotometer	91
6:4.	THE ANGULAR SOLAR OPTICAL PROPERTIES OF FABRIC MEMBRANES	93
6:4.1	The Purpose of Measuring the Angular Solar Optical Properties of the Membrane Samples.	93
6:4.2	The Apparatus Used to Measure the Angular Solar Optical Properties of the Membrane Samples.	93
6:4.3	The Method Used to Determine the Angular Solar Optical Properties of the Membrane Samples	94
6:4:4.	The Results Obtained Using the Edwards Type Integrating Sphere.	95
6:4.5	Analysis of the Results Obtained Using the Edwards Type Integrating Sphere. 96	
6:4.6	Assessment of the Investigation into the Solar Optical Properties of Fabric Membranes.	100
6:5.	THE LONG WAVE INFRA RED OPTICAL PROPERTIES OF FABRIC MEMBRANES	101
6:5.1	The Purpose of Measuring the Long Wave Infra Red Optical Properties of the Membrane Samples.	101
6:5.2	The Apparatus Available for Measuring the Long Wave Infra Red Optical Properties of Fabric Membranes.	101
6:5.3	The Apparatus Used to Measure the Long Wave Infra Red Optical Properties of the Membrane Samples	102
6:5.4	The Method Used to Determine the Angular Solar Optical Properties of the Membrane Samples.	103
6:5.5	The Results Obtained Using the Long Wave Infra Red Spectrophotometer	104
6:5.6	Analysis of the Results Obtained Using The Long Wave Infra Red Spectrophotometer	105
6:6	CONCLUSION.	108

7:	MODELLING THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES	117
7:1.	INTRODUCTION.	117
7:2.	GENERAL DESCRIPTION OF A MODEL DEVELOPED IN ORDER TO PREDICT THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES	117
7:2.1	The Purpose of The Boundary Model.	117
7:2.2	Simplifications Made in Order to Predict the Thermal Behaviour of Fabric Membranes.	117
7:2.3	The Format of the Model Developed in Order to Predict the Thermal Behaviour of Fabric Membranes	117
7:3.	DESCRIPTION OF THE SOLAR MODEL	120
7:3.1	Introduction.	120
7:3.2	Calculation of the Angle of Incidence of Direct Beam Solar Radiation Incident on the External Surface of the Membrane	121
7:3.3	Calculation of the Composition of Solar Radiation Incident on the External Surface of the Membrane.	123
7:3.4	Calculation of the Intensity of Solar Radiation Incident on the Internal Surface of the Membrane.	128
7:4	DESCRIPTION OF THE HEAT TRANSFER MODEL.	130
7:4.1	Introduction.	130
7:4.2	The Convergence Procedure	130
7:4.3	Calculation of the External Surface Long Wave Infra Red Radiation Heat Transfer.	132
7:4.4	Calculation of the Internal Surface Long Wave Infra Red Radiation Heat Transfer.	135
7:4.5	Calculation of the External Surface Convection Heat Transfer	136
7:4.6	Calculation of the Internal Surface Convection Heat Transfer	137
7:4.7	Calculation of the Membrane Core Behaviour	139
7:5.	COMPARISON BETWEEN THE MODEL OUTPUT AND MONITORED DATA	141
7:5.1	Introduction.	141
7:5.2	Comparison Between the Output of the Solar Model and Monitored Data.	141
7:5.3	Comparison Between the Output of the Heat Transfer Model and Monitored Data	144
7:5.4	Analysis of the Heat Transfer Model Output.	154
7:6.	CONCLUSION.	157

8:	MONITORING THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES.	159
8:1.	INTRODUCTION.	160
8:2.	THE MONITORING PROGRAMME	160
8:2.1	The Aims of the Monitoring Programme.	160
8:2.2	The Approach Adopted in Order to Monitor the Thermal Behaviour of the Enclosed Spaces.	161
8:2.3	The Approach Adopted in Order to Monitor External Conditions.	163
8:2.4	The Method Adopted for the Monitoring Programme.	165
8:3.	CASE STUDY 1: LANDRELL FABRIC ENGINEERING	166
8:3.1	Description of the Landrell Fabric Engineering	166
8:3.2	Information Monitored at Landrell Fabric Engineering	170
8:3.3	Analysis of the Information Monitored at Landrell Fabric Engineering	173
8:4.	CASE STUDY 2: THE ROYAL INTERNATIONAL EISTEDDFOD PAVILION, MAIN ARENA	175
8:4.1	Thermal Specification.	175
8:4.2	Information Monitored at the Eisteddfod Arena.	178
8:4.3	Analysis of the Information Monitored at the Eisteddfod Arena	182
8:5.	CASE STUDY 3: THE CHERITON PASSENGER TERMINAL, ADMINISTRATION AND AMENITY BUILDING	183
8:5.1	Description of the Administration and Amenity Building.	183
8:5.2	Information Monitored at the Administration and Amenity Building	187
8:5.3	Analysis of the Information Monitored at the Administration and Amenity Building	191
8:6.	CASE STUDY 4: THE AELTC INDOOR TENNIS CENTRE, COVERED COURTS	193
8:6.1	Description of the AELTC Covered Courts.	193
8:6.2	Information Monitored at the AELTC Covered Courts.	195
8:6.3	Analysis of the Information Monitored at the AELTC Covered Courts	199
8:7.	OVERALL ANALYSIS OF THE OBSERVED THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES	200
8:7.1	Summary of the Observed Behaviour	200
8:7.2	Modelling Implications of the Observed Behaviour.	201

CONTENTS.

8:8.	CONCLUSION
0.0.	

9:	MODELLING THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC
	MEMBRANES203
9.1	INTRODUCTION204
9:2.	THE MODELLING PROCESS204
9:2.1	The Aims of the Modelling Process
9:2.2	The Investigation of Fluid Flow
9:2.3	Computational Fluid Dynamics
9:2.4	General Description of Flovent
9:2.5	The Approach Adopted for the Modelling Process
9:3.	MODELLING THE THERMAL BEHAVIOUR OF LANDRELL FABRIC ENGINEERING
9:3.1	Specification of Landrell Fabric Engineering
9:3.2	Comparison Between the CFD Model Output and the Data Monitored at Landrell Fabric Engineering
9:4.	MODELLING THE THERMAL BEHAVIOUR OF THE EISTEDDFOD ARENA
9:4.1	Specification of the Eisteddfod Arena
9:4.2	Comparison Between the CFD Model Output and the Data Monitored at the Eisteddfod Arena
9:5.	MODELLING THE THERMAL BEHAVIOUR OF THE ADMINISTRATION AND AMENITY BUILDING224
9:5.1	Specification of the Administration and Amenity Building
9:5.2	Comparison Between the CFD Model Output and the Data Monitored at the Administration and Amenity Building
9:6.	MODELLING THE THERMAL BEHAVIOUR OF THE AELTC COVERED COURTS
9:6.1	Specification of the AELTC Covered Courts
9:6.2	Comparison Between the CFD Model Output and the Data Monitored at the AELTC Covered Courts
9:7	SUMMARY OF THE FINDINGS OF THE MODELLING PROCESS234
9:7.1	The Overall Accuracy of the CFD Simulations

9:8.	CONCLUSION.	239
9:7.2	Analysis of the Fluid Flow Model	236

10:	DISCUSSION	244
10:1.	INTRODUCTION.	245
10:2.	THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES	245
10:2.1	The Attempts of Previous Researchers to Investigate the Thermal Behaviour of Fabric Membranes	245
10:2.2	The Investigation into the Thermal Behaviour of Fabric Membranes Presented in this Thesis.	246
10:3.	THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES	252
10:3.1	The Attempts of Previous Researchers to Investigate the Thermal Behaviour of Spaces Enclosed by Fabric Membranes.	252
10:3.2	The Investigation into the Thermal Behaviour of Spaces Enclosed by Fabric Membranes Presented in this Thesis	253
10:4	OVERALL ASSESSMENT OF THE RESEARCH PRESENTED IN THIS THESIS	255
10:4.1	Introduction.	255
10:4.2	Fabric Membranes Tend to be Translucent	256
10:4.3	Fabric Membranes have Insufficient Mass to Significantly Affect their Thermal Behaviour.	256
10:4.4	The Geometry of Fabric Membranes is Doubly Curved.	258
10:5	FUTURE DEVELOPMENTS.	260
10:5.1	A Holistic Approach for Investigating the Thermal Behaviour of Spaces Enclosed by Fabric Membranes.	260
10:5.2	The Application of a Practical Tool.	262
10:6.	CONCLUSION.	263

11:	CONCLUSIONS	266
11.1	INTRODUCTION.	267

11.2	THE INCREASING INADEQUACY OF EXISTING ANALYTICAL TECHNIQUES	267
11.3	THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES	267
11.4	THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES	268
11.5	THE NEED FOR FURTHER RESEARCH	269

A1:	APPENDIX 1, LIST OF PERMANENT FABRIC STRUCTURES COMPLETED IN	_
	THE UK27 1	l
A1:1.	STRUCTURES COMPLETED IN 1978272	
A1:2.	STRUCTURES COMPLETED IN 1979272	
A1:3.	STRUCTURES COMPLETED IN 1981272	
A1:4.	STRUCTURES COMPLETED IN 1984272	
A1:5.	STRUCTURES COMPLETED IN 1985272	
A1:6.	STRUCTURES COMPLETED IN 1987272	
A1:7.	STRUCTURES COMPLETED IN 1988272	
A1:8.	STRUCTURES COMPLETED IN 1989	
A1:9.	STRUCTURES COMPLETED IN 1990272	
A1:10.	STRUCTURES COMPLETED IN 1991272	
A1:11.	STRUCTURES COMPLETED IN 1992273	
A1:12.	STRUCTURES COMPLETED IN 1993273	
A1:13.	STRUCTURES COMPLETED IN 1994	

A2:	APPENDIX 2, MEMBRANE MODEL CODE	
	LISTING.	274
A2:1	FABRIC MEMBRANE THERMAL MODEL CONTROL	275
	PROCEDUKES	
A2:1.1	Input Information	275
A2.1.2	Convergence Display	281
A2:1.3	Control Programme.	282
A2:2.	SOLAR MODEL.	287
A2:2.1	Calculation of The Angle of Incidence of Direct Beam Solar Radiation Incident on the External Surface of the Membrane	287
A2:2.2	Calculation of the Composition of Solar Radiation Incident on the External Surface of the Membrane.	288
A2:2.3	Calculation of the Composition of Solar Radiation Incident on the Internal Surface of the Membrane.	291
A2:3.	HEAT TRANSFER MODEL.	293
A2:3.1	Calculation of the External Surface Long Wave Infra Red Radiation Heat Transfer.	293
A2:3.2	Calculation of the Internal Surface Long Wave Infra Red Radiation Heat Transfer.	295
A2:3.3	Calculation of the External Surface Convection Heat Transfer	295
A2:3.4	Calculation of the Internal Surface Convection Heat Transfer.	296
A2:3.5	Calculation of the Membrane Core Behaviour	297
A2:4.	MODEL CODE SOURCES	300

A3:	BIBLIOGRAPHY	
A3:1.	BOOKS	
A3:2.	JOURNAL PAPERS	
A3:3.	CONFERENCE PAPERS	
A3:4.	STANDARDS	
A3:5.	UNPUBLISHED WORKS	

xii

LIST OF FIGURES.

1:	INTRODUCTION.	1
1.1	The Increasing Frequency of Permanent Fabric Structures Completed / Year in the LIK (see Appendix 1 for details)	2
1:6.	Schematic Illustration of the Format of this Thesis.	6

3: THE EXISTING BODY OF KNOWLEDGE......23

3:2.1	Schematic Illustration of the Standard Method For Calculating the Heat Transfer Across Fabric Membrane Building Envelopes.	28
3:2.2	Diagram to Illustrate the Dynamic Thermal Behaviour of Fabric Membranes.	30
3:3.1	Diagram to Show the Relationship Between Climatic Conditions and the Annual Energy Consumption Predicted by Hart et al. (artificial lighting 29.1W/m2).	33

4: METHODOLOGY......40

4:2.3a	Landrell Fabric Engineering. North Elevation, 1:500	13
4:2.3b	The Royal International Eisteddfod Pavilion, Main Arena. Section, 1:1000	43
4:2.3c	The AELTC Indoor Tennis Centre, Covered Courts. Perspective Sketch.	14

4:2.4	Landrell Fabric Engineering, Factory Space: Pilot Study	45
4:2.5	The Royal International Eistddfod Pavilion, Main Arena: Pilot Study	47
4:2.6	The AELTC Indoor Tennis Centre, Covered Courts: Pilot Study	49
4:4	Schematic Illustration of the Methodology Adopted for the Research Presented in the Rest of this Thesis	56

	Space	60
5:2.3	Schematic Illustration of the Components of the Test Cell and the Associated Meteorological Station	62
5:3.1a	List of The Test Cell Data used for Analysis and Validation Purposes	65
5:3.1b	Test Cell Data: Type 1 PVC Coated Polyester	66
5:3.1c	Test Cell Data: PTFE coated glass (new)	67
5:3.1d	Test Cell Data: Type 2 PVC Coated Polyester	68
5:3.1e	Test Cell Data: Type 3 PVC Coated Polyester	69
5:3.1f	Test Cell Data: Eisteddfod Arena Membrane (PVC Coated Polyester)	70
5:3.1g	Test Cell Data: Type 4 PVC Coated Polyester	71
5:3.2	Diagram to Show the Relationship Between the Difference in Temperatures Recorded at the Internal and External Surfaces of a Type 4 PVC Coated Polyester Membrane, and the Intensity of Solar Radiation Incident on its External Surface (03/05/95).	74
5:3.6	Diagram to Show the Relationship Between the Angle Incidence of Solar	

5:3.6	Diagram to Show the Relationship Between the Angle Incidence of Solar
	Radiation Striking the Test Cell, and the Inaccuracy of the Solar Intensity
	Recorded by the Internal Solarimeter

6:2.1	Diagram to Illustrate the Categorisation and Measurement of the Thermal Wavelengths of the Electromagnetic Spectrum.	.84
6:3.2	Schematic Representation of the Operation of the Integrating Sphere Solar Spectrophotometer	.89

LIST OF FIGURES.

6:3.4a	Near Normal Solar Optical Properties: Type 1 PVC Coated Polyester	91
6:3.4b	Near Normal Solar Optical Properties: Type 2 PVC Coated Polyester	91
6:3.4c	Near Normal Solar Optical Properties: Type 3 PVC Coated Polyester.	91
6:3.4d	Near Normal Solar Optical Properties: Type 4 PVC Coated Polyester	92
6:3.4e	Near Normal Solar Optical Properties: Eisteddfod Arena Membrane	92
6:3.4f	Near Normal Solar Optical Properties: Wimbledon Membrane (Outside Surface)	92
6:3.4g	Near Normal Solar Optical Properties: Wimbledon Membrane (Inside Surface)	93
6:3.4h	Near Normal Solar Optical Properties: Type 1 PTFE Coated Glass (New)	93
6:3.4i	Near Normal Solar Optical Properties: Type 1 PTFE Coated Glass (Weathered).	93
6:3.5	Weighted Near Normal Hemispherical Solar Optical Properties (Air Mass 2)	94
6:4.2	Schematic Illustration of the Apparatus Used to Measure the Angular Solar Optical Properties of the Sample Membranes	96
6:4.4a	Angular Solar Optical Properties: Type 1 PVC Coated Polyester	99
6:4.4b	Angular Solar Optical Properties: Type 2 PVC Coated Polyester	99
6:4.4c	Angular Solar Optical Properties: Type 3 PVC Coated Polyester	99
6:4.4d	Angular Solar Optical Properties: Type 4 PVC Coated Polyester	100
6:4.4e	Angular Solar Optical Properties: Eisteddfod Arena Membrane	100
6:4.4f	Angular Solar Optical Properties: Wimbledon Membrane (Outside Surface)	100
6:4.4g	Angular Solar Optical Properties: Wimbledon Membrane (Inside Surface)	101
6:4.4h	Angular Solar Optical Properties: Type 1 PTFE Coated Glass (New).	101
6:4.4i	Angular Solar Optical Properties: Type 1 PTFE Coated Glass (Weathered)	101
6:4.5	The Near Normal and Diffuse Solar Optical Properties of the Membrane Samples	103
6:4.6	Comparison Between the Change in the Proportion of Solar Radiation Transmitted and Absorbed by a Sheet of 3mm Clear Float Glass with Angle of Incidence and that of a Typical Fabric Membrane	104
6:5.3	Schematic Illustration of the Long Wave Infra Red Spectrophotometer.	107
6:5.5a	Near Normal Long Wave Infra Red Optical Properties: Type 1 PVC Coated Polyester	109
6:5.5b	Near Normal Long Wave Infra Red Optical Properties: Type 2 PVC Coated Polyester	109
6:5.5c	Near Normal Long Wave Infra Red Optical Properties: Type 3 PVC Coated Polyester	109
6:5.5d	Near Normal Long Wave Infra Red Optical Properties: Type 4 PVC Coated Polyester	110
6:5.5e	Near Normal Long Wave Infra Red Optical Properties: Eisteddfod Arena Membrane	110

6:5.5f	Near Normal Long Wave Infra Red Optical Properties: Wimbledon Membrane (Outside Surface)	110
6:5.5g	Near Normal Long Wave Infra Red Optical Properties: Wimbledon Membrane (Inside Surface)	111
6:5.5h	Near Normal Long Wave Infra Red Optical Properties: Type 1 PTFE Coated Glass (New)	111
6:5.5i	Near Normal Long Wave Infra Red Optical Properties: Type 1 PTFE Coated Glass (Weathered)	111
6:5.6	Weighted Long Wave Infra Red Optical Properties of the Membrane Samples	112

7:2.3	Schematic Illustration of the Model Format	120
7:3.1	Diagram to Illustrate the Parameters Predicted by Solar Model	124
7:3.2	Diagram to Illustrate Solar Azimuth and Altitude.	125
7:3.3	Diagram to Illustrate the External Hemispherical View Factors.	130
7:4.1	The Heat Transfer Model Representation of the Thermal Behaviour of Fabric Membranes.	133
7:4.2	Schematic Illustration of the Convergence Procedure.	135
7:4.3	Table to Illustrate the Extreme Differences Between the External air Temperature and the Surface Temperatures of a Range of Commonly Occurring Materials	137
7:5.2a	Solar Model Simulation: 16/9/94.	145
7:5.2b	Solar Model Simulation: 20/0/94.	145
7:5.2c	Solar Model Simulation: 10/10/94.	146
7:5.2d	Diagram to Show the Relationship Between Predicted and Monitored Solar Radiation Incident upon Surfaces of Inclination from 55 to 700	146
7:5.2e	Table to Summarise the Predicted Errors Associated with the Solar Model	147
7:5.3a	Thermal Simulation: Type 1 PVC Coated Polyester	148
7:5.3b	Thermal Simulation: PTFE Coated Glass (New).	148
7:5.3c	Thermal Simulation: Type 2 PVC Coated Polyester	149
7:5.3d	Thermal Simulation: Type 3 PVC Coated Polyester	149
7:5.3e	Thermal Simulation: Eisteddfod Arena Membrane.	150
7:5.3f	Thermal Simulation: Type 4 PVC Coated Polyester	150
7:5.3g	Table to Summarise the Differences Between Predicted and Recorded Membrane Internal Surface Temperatures.	151
7:5.3h	The Relationship Between the Monitored Internal Surface Temperature and the Temperature Predicted Using The Dynamic Boundary Model.	151

7:5.4a	Table to Summarise the Significance of the Various Modes of HeatTransfers Calculated by The Thermal Boundary Model	53
7:5.4b	Graph to Illustrate the Significance of the Various Modes of Heat Transfers Calculated by The Thermal Boundary Model	54
7:6.	Table to Summarise the Overall Errors Associated with the Boundary Model	55

8:2.2	Comparison Between the Temperatures Recorded by Three Different Types of Sensor Under the Same Conditions (11:00 11/7/94 to 19:00	
	12/7/94)	
8:3.1a	Landrell Fabric Engineering, Section A-A (1:500)	169
8:3.1b	Landrell Fabric Engineering, Floor Plan (1:500).	169
8:3.2a	Landrell Fabric Engineering. 12/03/94	171
8:3.2b	Landrell Fabric Engineering. 01/10/94.	172
8:3.3a	Diagram to Illustrate the Range of Resultant Temperatures Monitored Within Landrell Fabric Engineering 12/3/94.	
8:3.3b	Diagram to Illustrate the Progressive Moderating Effect of the Landrell Fabric Engineering Roof Cavity and Factory Space (1/10/94).	174
8:4.1a	Royal International Eisteddfod Pavilion, Main Arena, Section B-B.(1:500)	177
8:4.1b	Royal International Eisteddfod Pavilion, Main Arena, Floor Plan (1:500)	177
8:4.2a	Royal International Eisteddfod Pavilion, Main Arena. 24/08/94	179
8:4.2b	Royal International Eisteddfod Pavilion, Main Arena. 25/08/94	
8:4.3a	Diagram to Show the Affect of Changing Environmental Conditions on the	
	Range of Resultant Temperatures Monitored Within the Eisteddfod Arena (25/4/94).	
8:4.3b	Diagram to Show the Relationship Between the Intensity of Horizontal Global Solar Radiation and the Stratification of Resultant Temperatures Monitored Within the Eisteddfod Arena (25/8/94)	
8:5.1a	The Administration and Amenity Building, Section C-C (1:1000).	
8:5.1b	The Administration and Amenity Building, Ground Floor Plan (1:1000).	
8:5.2a	The Administration and Amenity Building. 17/04/94	
8:5.2b	The Administration and Amenity Building. 11/06/94	
8:5.3a	Diagram to Show the Relationship Between External Conditions and the Range of Resultant Temperatures Monitored in the Administration and	
	Amenity Building (17/4/94).	189

8:5.3b	Diagram to Show the Relationship Between External Conditions and the Range of Resultant Temperatures Monitored in the Administration and Amenity Building (11/6/94)	.189
8:5.3c	Diagram to Show the Average Stratification of Resultant Temperatures Recorded Within the Administration and Amenity Building (17/4/94)	.191
8:6.1a	The AELTC Covered Courts, South East Elevation (1:500).	.193
8:6.1b	The AELTC Covered Courts, Floor Plan (1:500).	.193
8:6.2a	The AELTC Covered Courts. 24/03/94	.195
8:6.2b	The AELTC Covered Courts. 27/07/94	.196
8:6.3a	Diagram to Show how the Range of Resultant Temperature Monitored Within the AELTC Covered Courts Varied in Response to Changes in Environmental Conditions (27/7/94)	.197
8:6.3b	Diagram to Illustrate the Difference Between the Maximum Stratification Recorded Within the AELTC Covered Courts (27/7/94 13:00) and the Maximum Stratification Recorded Within the Administration and Amenity Building (11/6/94 15:08).	.198

9:2.4	Schematic Illustration of the Computational Process used by Flovent	208
9:2.5	Table to Summarise the Properties Used to Predict the Thermal State of the Fabric Membrane Boundaries.	212
9:3.1a	Model Representation of Landrell Fabric Engineering	215
9:3.1b	Landrell Fabric Engineering, Factory Space: Thermal Simulation. 01:00 01/10/94.	216
9:3.1c	Landrell Fabric Engineering, Factory Space: Thermal Simulation. 13:30 01/10/94.	217
9:3.2	Graph to Illustrate the Relationship Between the Monitored and Predicted Resultant Temperatures Within Landrell Fabric Engineering.	218
9:4.1a	Royal International Eisteddfod Pavilion, Main Arena: Model Representation.	220
9:4.1b	Royal International Eisteddfod Pavilion, Main Arena: Thermal Simulation. 21:43 24/08/94	221
9:4.1c	Royal International Eisteddfod Pavilion, Main Arena: Thermal Simulation. 13:39 25/08/94	222
9:4.2a	Graph to Illustrate the Relationship Between the Monitored and Predicted Resultant Temperatures Within the Eisteddfod Arena	223
9:4.2b	Diagram to Illustrate the Radiant and Air Temperature Components of the Resultant Stratification Predicted by Flovent (13:39 25/08/94).	224
9:5.1a	The Administration and Amenity Building: Model Representation.	226

9:5.1b	The Administration and Amenity Building: Thermal Simulation. 14:00 17/04/94.	27
9:5.1c	The Administration and Amenity Building: Thermal Simulation. 10:30 11/06/94	28
9:5.2	Graph to Illustrate the Relationship Between the Monitored and Predicted Resultant Temperatures Within the Administration and Amenity Building22	29
9:6.1a	The AELTC Covered Courts: Model Representation	31
9:6.1b	The AELTC Covered Courts: Thermal Simulation. 06:30 24/03/9423	32
9:6.1c	The AELTC Covered Courts: Thermal Simulation. 12:00 27/07/9423	33
9:6.2	Graph to Illustrate the Relationship Between the Monitored and Predicted Resultant Temperatures Within the AELTC Covered Courts	34
9:7.1a	Graph to Illustrate the Relationship Between the CFD Simulations and the Monitored Data	36
9:7.1b	Diagram to Show the Relationship Between the Extent f Monitored Internal Stratification and the Accuracy of the Internal Resultant Temperatures Predicted by Flovent	37
9:7.1c	Diagram to Show the Relationship Between the Monitored stratification of Internal Resultant Temperatures, and the Various Thermal Gradients Predicted by Flovent	38
9:7.2a	Diagram to Illustrate the Grid Refinement Necessary in Order to Allow Fast Moving Air Streams at Cold Window Surfaces to be Predicted	41
9:7.2b	Diagram to Illustrate the Grid and Surface Refinement Necessary in Order to Allow Fast Moving Air Streams at Curved Surfaces to be Predicted	41

10: DISCUSSION......244

10:2.2aTable to Summarise the Overall Errors Associated with the Boundary Model Described in Chapter 7	249
10:2.2bDiagrams to Illustrate the Difference Between the Conventional Model of the Thermal Behaviour of Fabric Membranes, and the Model Considered Necessary for the Purposes of this Research	250
10:2.2cDiagram to show the Relative Significance of the Membrane Heat Transfers Predicted Using the Thermal Model Described in Chapter 7	251
10:3.2 Diagram to Illustrate the Characteristic Thermal Behaviour of Unheated Spaces Enclosed by Fabric Membranes.	253
10:4.4aDiagram to Show the Affect of Reducing the Grid Spacing Used by Flovent on the Air Temperatures Predicted Within a Small Box	259
10:4.4bDiagram to illustrate the Surface Refinement Possible with a Body Fitted Co-ordinate Grid	260
10:5.1 A Dynamic Tool for Predicting the Thermal Behaviour of Spaces Enclosed by Fabric Membranes	262

ACKNOWLEDGEMENTS.

Roger Ambrose, The All England Lawn Tennis an Croquet Club. Mike Barnes, City University. Carolyn Brindle, Royal International Eisteddfod Pavilion, Anne Frith, Imagination Ltd. Paul Gibbins, Building Design Partnership, Chris Harding, Eurotunnel. Ian King, Ian King Architects. Professor Phil Jones, UWCC. Dr Peter Lewis, UWCC. Peter Moseley, Buro Happold. James Newman Jr, Birdair Inc. Eric Newton, John Heathcoat & Co. Monotobu Nohmura, Taiyo Koygo Corporation. Professor Derek Poole, UWCC. Norman Robson-Smith, UWCC. Lance Rowell, Landrell Fabric Engineering. Dr Chris Williams, University of Bath.

DECLARATION AND STATEMENT.

Declaration.

This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree.

Statement 1.

This thesis is the result of my own investigations, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Statement 2.

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed	(Candidate)
Date	
Signed	(Supervisor)
Date	

LIST OF SYMBOLS.

Symbol	Description	Units
А	Атеа	m ²
Δ.	Solar altitude	0
A _S	Solar azimuth	0
Δ	A zimuth of surface normal	0
A _W	Shadowband ring width	mm
C		$W/m^{2}Q_{c}$
core	External membrane core conductivity	$W/m^2 Q_c$
^c core l	Internal memorane core conductivity	$W/m^2 Q_2$
core2	Debineen's chadewhend correction factor	w/mc
C _f	Cloudy sky horizontal diffuse solar radiation	w/m ²
D	Cloudy sky nonzonial diffuse solar radiation	w/m-
d E		
E _{ot}	Equation of time	ratio
F	Solar heat gain coefficient	ratio
F _E	Emissivity factor	
G	Theoretical clear sky horizontal global solar radiation	W/m ²
g	Gauge	m
g1	External membrane gauge	m
g2	Internal membrane gauge	m 2
Н	Horizontal global solar radiation	W/m ²
Н _а	Incident clear sky long wave infra red radiation	W/m ²
H _{ac}	Horizontal clear sky long wave infra red radiation	W/m ²
h	Elevation	km
h _{ci}	Inside surface convection heat transfer coefficient	W/m ²⁰ c
h _{ci(i)}	Inclined surface convection heat transfer coefficient	W/m ²⁰ c
h _{co}	Outside surface convection heat transfer coefficient	W/m ²⁰ c
hi	Inside surface thermal resistance	W/m ²⁰ c
h _o	Outside surface thermal resistance	W/m ²⁰ c
h _{ri}	Inside surface radiant heat transfer coefficient	W/m ²⁰ c
h _{ro}	Outside surface radiant heat transfer coefficient	W/m ²⁰ c
Ι	Incident solar radiation	W/m ²
Id	Incident direct beam solar radiation	W/m ²
I _{dhl}	Theoretical clear sky direct horizontal solar radiation	W/m ²
I _{dn}	Direct normal solar radiation	W/m ²
I _{dnl}	Theoretical clear sky direct normal solar radiation	W/m ²
I _{et}	Normal extraterrestrial solar radiation	W/m ²
I_{f}	Incident diffuse solar radiation	W/m ²

xxiii

I _{fhl}	Theoretical clear sky diffuse horizontal solar radiation	W/m ²
I _{sc}	Solar constant	W/m ²
I sc1	Corrected solar constant	W/m ²
I _{sf}	Incident sky diffuse solar radiation	W/m ²
$I_{\delta(ext)}$	Remaining external incident solar radiation at depth δ	W/m ²
I _{\delta(int)}	Remaining internal incident solar radiation at depth δ	W/m ²
i	Angle of incidence	0
K _{ext}	External incident radiation extinction coefficient	W/g
K _{int}	Internal incident radiation extinction coefficient	W/g
Κλ	Extinction coefficient at wavelength λ	W/g
K _t	Clearness index	ratio
L	Characteristic length	m
m	Air mass	ratio
Ν	Cloudiness index	ratio
P_{λ}	power distribution of a full radiator at 283°K	W/λ
Q _{sol}	Solar heat gain	W/m ²
Q _{mem}	Boundary heat transfer	W/m ²
q	Net power exchange	W
qcondi	Net internal surface conductive heat transfer	W/m ²
qcondo	Net external surface conductive heat transfer	W/m ²
q _{cvi}	Net internal surface convection exchange	W/m ²
q _{cvo}	Net external surface convection exchange	W/m ²
qi	Net internal surface heat transfer	W/m ²
qlwi	Net internal surface long wave infra red radiation exchange	W/m ²
q _{lwo}	Net external surface long wave infra red radiation exchange	W/m ²
q _o	Net external surface heat transfer	W/m ²
qρi	Reflected direct beam solar radiation	W/m ²
$q \rho_{f}$	Reflected diffuse solar radiation	W/m ²
qp(ext)	Reflected external incident solar radiation	W/m ²
$q_{\rho(int)}$	Reflected internal incident solar radiation	W/m ²
q _τ	Solar radiation directed into an enclosure	W/m ²
$q\tau_i$	Transmitted direct beam solar radiation	W/m ²
$q\tau_{f}$	Transmitted diffuse solar radiation	W/m ²
q _t (ext)	Transmitted external incident solar radiation	W/m ²
q _t (int)	Transmitted internal incident solar radiation	W/m ²
qα	Absorbed solar radiation.	W/m ²
$q\alpha_i$	Absorbed direct beam solar radiation	W/m ²
$q\alpha_f$	Absorbed diffuse solar radiation	W/m ²
qα(int)	Absorbed internal incident solar radiation	W/m ²
qα(ext)	Absorbed external incident solar radiation	W/m ²

xxiv

R	Thermal resistance	m ²⁰ c/W
R _c	Core thermal resistance	m ²⁰ c/W
R _s	Air gap thermal resistance	m ²⁰ c/W
R _{si}	Inside surface thermal resistance	m ²⁰ c/W
R _{so}	Outside surface thermal resistance	m ²⁰ c/W
r	Shadowband ring radius	mm
SC	Shading Coefficient	ratio
SHGF	Solar Heat Gain Factor	W/m ²
s _t	Solar time	ratio
Т	Surface temperature	o _c
T _c	Turbidity coefficient	ratio
T _e	External hemisphere black body surface temperature	°c
T _{grd}	Ground temperature	o _c
Ti	Internal surface temperature	o _c
TL	Atmospheric turbidity	unitless
$T_L(A_s)$	Solar altitude corrected turbidity	unitless
T _{max}	Maximum observed surface temperature	o _c
T _{min}	Minimum observed surface temperature	0 _C
To	External surface temperature	°c
T _{obs}	Obstruction temperature	°c
T _{sky}	Equivalent black body sky temperature	0 _C
ti	Inside air temperature	o _c
tis	Enclosure surface temperature	o _c
to	Outside air temperature	o _c
tq	Equivalent enclosure surface temperature	o _c
t _r	Radiant temperature	o _c
t _{res}	Resultant temperature	o _c
U	Thermal conductivity (U value)	W/m ²⁰ c
V	Local surface velocity	m/s
v_{f}	Free stream wind speed	m/s
Vgrd	Ground view factor	ratio
Vi	Internal air velocity	m/s
V _{obs}	Obstruction view factor	ratio
Vp	Parallel flow velocity	m/s
V _{sky}	Sky view factor	ratio
v(0)	Voltage at near normal angle of incidence	v
v(i)	Voltage at angle of incidence i	V
W	Precipitable water content	mm
Y	Day number	(1 - 365)

XXV

Symbol	Description	Units
α	Absorptance	ratio
α(0)	Near normal solar absorptance	ratio
$\alpha_{(ext)}$	Solar Radiation absorbed by internal half of membrane	W/m ²
$\alpha_{(int)}$	Solar Radiation absorbed by external half of membrane	W/m ²
α(i)	Hemispherical solar absorptance at angle of incidence i	ratio
α (f)	Diffuse solar absorptance	ratio
α_{lw}	Long wave infra red absorptance	ratio
β	Inclination of surface from horizontal	0
δ	depth	mm
ε _{ac}	Horizontal clear sky apparent emittance	ratio
ε _{am}	Horizontal cloudy sky apparent emittance	ratio
ε _{eq}	Equivalent emissivity	ratio
ε _h	Hemispherical emissivity	ratio
ϵ_i	Membrane internal surface emissivity	ratio
ϵ_{int}	Enclosed space emissivity	ratio
ε _n	Near normal emissivity	ratio
εο	Membrane external surface emissivity	ratio
ø	Latitude	0
Ø	Time lag	seconds
λ	Wavelength	nm (µm)
θ_{y}	Day angle	0
θ_h	Hour angle	0
ρ	Reflectance	ratio
ρ(0)	Near normal solar reflectance	ratio
ρ(f)	Diffuse solar reflectance	ratio
ρ(i)	Hemispherical solar reflectance at angle of incidence i	ratio
$\rho_{\rm lw}$	Long wave infra red reflectance	ratio
ρλ	Reflectance at wavelength λ	ratio
σ	Steffan- Boltzmann constant 5.6697 * 10 ⁻⁸	W/m^2K^4
τ	Transmittance	ratio
τ_{av}	Average solar transmittance of membrane.	ratio
τ(0)	Near normal solar transmittance	ratio
$\tau(f)$	Diffuse solar transmittance	ratio
$\tau(i)$	Hemispherical solar transmittance at angle of incidence iratio	
τlw	Long wave infra red transmittance	ratio
τ_{λ}	Transmittance at wavelength λ	ratio

xxvi